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B E N D I N G  OF  A T H R E E - L A Y E R  O R T H O T R O P I C  B E A M  

A. E. A l e k s e e v  UDC 539.3 

Following the classification of [1, 2], the principal approaches to the development of the theory 
of multilayer structures are divided into several trends. These are primarily studies based on kinematic 
hypotheses accepted either for a packet as a whole (the hypothesis of a unique normal) or for each individual 
layer (for example, the hypothesis of a broken line [3]). 

The approach to the development of the theory of layered media reported in [4] in which the basic 
equations are derived using the energetic procedure of spreading or averaging is widely used. 

The methods based upon presenting the characteristics of a stress-strained state as a series (asymptotic 
methods and the methods in which unknowns are expanded into the series with respect to the transvere 
coordinate) are used to elaborate more precise theories. 

The present paper belongs to this trend. As a basis we took the results of [5, 6] where the method 
of deriving the equations of an elastic layer is formulated for arbitrary boundary conditions at face surfaces 
(either displacements or stresses can be assigned) while retaining the differential order of the appropriate 
system of differential equations. A distinctive feature of this approach is the use of several approximations for 
the same sought quantities. 

The method is used in solving the problem on bending of a three-layer orthotropic beam. The elastic 
deformation of each monolayer is described by the equations in [7]. At the interlayer boundaries the conjugation 
conditions are satisfied both for displacements and stresses. The proficiency of the method is illustrated by 
the example of bending of a three-layer carbon-filled plastic beam. A comparison with the solutions available 
in the literature is made. 

1. E q u a t i o n s  for Elas t ic  D e f o r m a t i o n  of an O r t h o t r o p i c  B e a m .  Let us consider a beam of unit 
width, height 2h, and length L. The beam is deformed under the conditions of a plane stressed state ax, ay, 
crxy. We denote the displacements in the direction of the x and y axes by u and v, respectively. The external 
forces {p+, q+} and {p-, q-} are applied at the boundaries y = h and y = - h  respectively (p+ and q+ are the 
normal and tangential forces). The beam is made of an orthotropic material whose orthotropy axes coincide 
with the z and y axes. The strains r ey, and e~ u are related to the stresses by Hooke's law 
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- -  ~ y --~ - -  _ l l  x y - ~ - ~  , 

Ex ~yx Ey ' Ey x 

2~zy = O'zy Uzy _ uyz. 
a~y' E--~- Ey 

(1.1) 

Following the results of [6], the stresses are approximated by a truncated series with respect to 
Legendre's polynomials Pk(~) (~ = y/h): 

2hax = N + 3-~Pl(~), ay = po + APPI(~), 

2ha,~y = Q + 2hAq Pl(~) + (2hq0 - Q)P2(~), 

Aq = 0.5(q + - q-),  qo = 0.5(q + + q-),  (1.2) 

zXp = 0.5(p + - p - ) ,  p0 = 0.5(p + + p - ) .  
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Fig. 1. Bending of a three-layer beam 

h h h 
Here N = f cr~ dy is the force; M = f ~xy dy is the moment; Q = f a ~  dy is the shearing force. 

-h  -h  -h 
The displacements and strains are approximated by a truncated series: 

3 2 

k=0 k=0 

gx = d[u]~ d[u]xp l (~) ,  gy-~ l[v]a..t-~--[v]2pl(~), 

(1.3) 

(1.4) 
2Exy ~ d[v]o  t" 1([u]1_~ - [~]3)..~_ 3[/z]2pl(~)q - 5[u]3p2(~). 

Substituting the stresses (1.2) and stresses (1.4) in Hooke's law (1.1) and equating the coefficients of 
identical polynomials, we obtain 

d .u] 0 N p0 d [ u ] l  3M Ap 
-~x [ = 2hEz  vzyEZ'  - -  - 2h2Ez t"ZYEY' (1.5) 

d[v]0 + h@]l + : Q 
2hG~y ; 

[u] 2 =  3G-----~uAq, [u] 3 -  q 0 -  , 
(1.6) 

[v] 1 = h p0 N ~ M 

We add the equilibrium equations to Eqs. (1.5) and (1.6): 

d M _ d Q  
~ z N + 2 A q = 0 ,  dx Q + 2hq~ = O' dx + 2Ap  = O" (1.7) 

Given the external forces {p+, q+}, {p-, q-}, Eqs. (1.5) and (1.7) form a closed system of ordinary 
differential equations of the sixth order with respect to the unknown functions N, M, Q, [u] ~ [u] 1, and [v] ~ 
The unknown functions [u] 2, [u] 3, [v] a, and [v] 2 are determined from algebraic equations (1.6). 

2. Equa t i ons  of Bend ing  of a T h r e e - L a y e r  B e a m .  Let us consider the problem on bending of a 
three-layer beam of thickness H and length L (Fig. 1), composed of reinforced monolayers. The directions of 
reinforcement of the first and third layers coincide with the beam axis, while the reinforcement of the second 
layer is directed perpendicular to the beam axis: E~ = Ell, Gk-y = G12 (k = 1, 3); E~ 2 = E22, G~ u = G23. 
Hereafter all values relevant to the kth layer are denoted by the superscript k. The thickness of each monolayer 
is constant and equals 2h (H = 6h). 

At the face surfaces the beam is loaded by the external forces 

. 7rx q3+ p l -  ql-  ( 2 . 1 )  p3+ = g0 sm (-~-), = 0, = 0, = 0. 

The elastic deformation of each monolayer is described by Eqs. (1.5)-(1.7). Three local reference frames 
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are introduced (z k, yk): 

x k = x (k = 1,2,3), yl = HI3 + y, y2 = y, y3 = y _ H/3. 

Accordingly, the dimensionless variable is ~ = yk/h (k = 1, 2, 3). 
To simplify the problem let us assume that  the displacements v k (k = 1, 2, 3) are independent of the 

coordinate y, i.e., in the approximations of displacements (1.3) and strains (1.4) we have 

[vk] ~ = 0, 

Furthermore, in Hooke's law we assume that  

(k = 1,2, 3, ~ = 1,2). (2.2a) 

uxy _- uy, ..~_ 0. (2.2b) E. Ey 
Under these assumptions Eqs. (1.5)-(1.7) for each monolayer take the form 

d Nk d d Qk 
~xx + 2 A q k = 0 '  M k_Qk+2hqko = 0 ,  ~xx + 2 A p k = 0 "  

d k o Nk d r kll 3Mk 
~[u ] - 2 - ~ '  ~t,., J = 2 - ~ '  

Qk 

~rvkl~ + �88 + [uk]~) = 2hG~' 

h ~h  (qkO-~h)  ( k = 1 , 2 , 3 ) .  [~kl2- 3G~Aq k, [uk] 3=  

At the surfaces of the interlayer contact the conditions of continuity of stresses 
ql+ = q2-, q2+ = q 3 -  pl+ = p 2 -  p2+ = p3- 

and displacements 
3 3 

~ [ u a l "  = ~-~ ( -  1)~[u2ln , 
n=O n=O 

3 3 
~[u2ln = E(-1)n[u3]  n, 
n=O n=O 

[vl]o = [v2]o, [.2]0 = [~3]0 

(2.3) 

(2.4) 

(2.5) 

should hold. Formulas (2.5) are obtained in terms of equalities (1.3) and (2.2a) and the properties of Legendre's 
polynomials. 

The boundary conditions at the beam edges are given by the equalities 

g k = 0 ,  M k = 0 ,  Irk] ~  ( k = 1 , 2 , 3 ) ,  for x = 0 ,  L. (2.6) 

As a result, the problem on elastic deformation of a three-layer beam is reduced to solving the system 
of ordinary differential equations (2.3)-(2.5) subject to boundary conditions (2.6), whose solution is of the 
form 

q l+=- f l lA3C(x) '  q2+=-fl2A3C(x) '  (2.7) 

pl+ = alA4S(x), p2+ = a2i4S(z),  A = ~r/L. 

Here aT, fiT are unknown constants; C(x) = go cos (Ax); S(x) = go sin (Ax). We integrate the system of 
equations (2.3) taking into account (2.4), (2.7) and boundary conditions (2.6). This yields the expressions for 
stresses 

N } = nkA2S(x), Q} = qkA3C(x), M k = rrtkA2S(x) (k = 1, 2,3), (2.8) 

where 
nl -- ill; n2 =/32 -/~1; n3 = -/32; ql = hi;  q2 -- a2 - hi;  q3 = 1/A 4 - a2; 
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ml = al + hill; 

and.for displacements 

[uk] ~ = -A(x )Khnk ,  

[uk] 3 = -A(x)K12tmk/5, 

[ u 2 ]  ~ = -A(x)h~2, 

rn2 = a2 -- Crl + h(ill -4-/32); m3 = 1/A 4 -- a2 + hil2. 

[uk]l = - 3 A ( x ) K m k ,  [uk]2 = - A ( x ) K l 2 h t n } / 3 ,  

[vk] ~ = B(z)(3Kmk + Kl2t(qk + ink/5)) (k = 1,3), 

[u2]l=-3A(x)m2, [u212=-A(x)K23htn2/3, 

Here 

[u213 = A(x)K23tm2/5, [v21 ~ = B(x)(am2 + K23t(q2 + m2/5)). 

( 2 . 9 )  

A(x) = AC(x)/(2h2E2); B(x) = S(x)/(2haE2); t = A2h2; (2.10) 

K = E2/Ea; K12 =E2/G12, K23 =E2/G2a .  

Substituting (2.9) into the conditions of conjugation of layers (2.5), we obtain the system of four algebraic 
equations with respect to the parameters a l ,  a2,/31, and/32. Without presenting the calculations, we write 
down the solution 

i l l  = il2, a l  + a2 = 1 / ~  4, 

ill +/32 = - ( 3 6 K  + 8.4t(K12 + KK23) -4- 0.96t2K12I(23)/(/kh)~4), 

a 2 - a l  = (36K+3K2+t(8.4K12+2.4KK12+5.2KK23)+t2K12(O.56K23+O.6Kx2))/(AA4), (2.11) 

A = 78K + 3K 2 + t(12.8K12 + 12K2a + 5.2KK12 + 13.2kk23) + t2(O.6K~2 + 1.92K12K2a + 0.84K2a). 

We determine from (2.9) the dimensionless bending W at the point of its maximum (z = L/2): 

W -  100E2H3[v2] ~  108.102 
goL 4 L ~  ((a2 - al)(3 + 1.2tt(23) + h(ill +/32)(3 + 0.2tK23)). 

108 �9 102 9K 2 -I- tKCI + t2C2 -Jr t3C3 

Hence, using (2.11), we obtain finally 

W -  

where 

a -4 78K + 3K 2 + tD1 + t2D2 ' 
(2.12) 

Stresses, strains, and displacements are calculated from 
dimensionless axial stresses we have 

- k c~ N k 3M k ~ - _ _ _  + (~) 
go 2 h g o  2--~go PI 

while for the dimensionless tangential stresses we obtain 

For example, for the 

C1 = 18K23 A- 15.6K12 -4- 3.6KK23; 

C2 = 1.8K122 + 7.2K12K23 + 1.2KK223 + 6, 24KK12K23; 

C3 = 0.48K12K23(K23 + K12); 

D1 = 12K23 + 12.8/(12 + 13.2KK23 + 5.2KK12; 

D2 = 0.6K122 + 1.92K12K23 + 0.84K23 �9 

formulas (1.2)-(1.4). 

(k = 1,2,3), (2.13) 

(qo 
~rzY go 2-~go -{- Aqkpl(()go § \~00 2~g0 P2(~) (k = 1,2,3). (2.14) 

3. E q u a t i o n s  Based  on t h e  B r o k e n  Line  H y p o t h e s i s .  Following this hypothesis, the 
approximations of stresses, strains, displacements are obtainable from approximations (1.2)-(1.4), assuming 
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that 

in the form 

[~]~= [ C  = [ C  = [ ' f =  0, 

1 

k=0 

3M 
2ha~ = N + ---h--Pl(~), ~ry = po + APPI((), 

2hazy = Q + 2hAqpl(~) + (2hq0 - Q)P2(~), 

A q = 0 . 5 ( q  + - q - ) ,  qo=0-5(q + + q - ) ,  

A p  = 0.5(p + - p - ) ,  po = 0.5@ + + p - ) ,  

v = [vl 0, C~ = ~xx[U] + [ullpl(~), 

2~zy = ~x [v]~ + h [U]l. 

The appropriate differential equations for each layer follow from Eqs. (2.3): 

x Nk + 2Aq k = O, 

~ [ ~ k l 0  _ N k 

dx ' 2hE~ ' 

At the surfaces of layer contact the continuity conditions for stresses 

ql+ = q2-, q2+ = q3-, pl+ = p 2 -  p2+ : p3- 

and displacements 

Cy ~ O, 

- r + = o, + = o, 

d [ u k ]  I 3M ~ d [  k]0 + h[Ukll= Qk 
dx - 2h2E~ ' dx ~v ~ 2hGk~y" 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

1 1 1 1 
~ [ u l ] n  = ~ ( - 1 ) n [ u 2 ]  n, ~ [u2 ]n  = ~-~(-1)'~[u3] n, 

. = o  ,~=o ~=o ~=o (3 .5)  

[vl]0 = [.210 , IVY]0 = iv310 

should hold. The boundary conditions at the beam ends are identical to conditions (2.6): 

N k = 0 ,  M k = 0 ,  [vk] ~  ( k = 1 , 2 , 3 )  np~ x = 0 .  (3.6) 

Thus, with the use of the broken line hypothesis the problem of elastic deformation of a three-layer 
beam is reduced to the solution of a system of ordinary differential equations (3.3)-(3.5) subject to boundary 
conditions (3.6). After integration, we obtain the expressions for forces and moments 

N k = nkA2S(x), Qk = qk)3C(x), M k = mk~2S(x) (k = 1,2, 3); (3.7) 

where 
nl = ~1; n2 = f12 -- ill; n3 = --f12; ql = al;  q2 = a2 -- 51; q3 = 1/~ 4 -- eL2; 

rnl = o q + h i l l ;  m 2 = a 2 - a l + h ( ~ l + f l 2 ) ;  r n3=  1/.~ 4 - a 2 + h f 1 2 ,  

(3.s) 

and for displacements 

[uk]~  [uk]l=--3A(x)I(mk,  

[vk] ~ = B(x)(3Kmk + K12tqk) (k = 1,3), 

[u2]~ -A(x )hn ,  [u2] 1 = -3A(x)m2,  [v2] ~ = B(x)(3m2 + K23tq2). 

A(x) = AC(x)/(2h2E2); B(z) = S(x)/(2h3E2); t = A2h2; 
Here 
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K = E2/E1; K12 -- E2/G12; 1(23 -- E2/G23. 

Substituting (3.8) into the conditions of conjugation of layers (3.6), we obtain a system of four algebraic 
equations with respect to the parameters al ,  a2, ~l, f12- Omitting the calculations, let us write the solution 
of the system as 

~1 = ~2, a l  + a~ = 1/,~ 4, 

/~1 +/~2 = - ( 3 6 K  + 6t(IQ2 + KK23) ) / (AhA4) ,  

a2 - al = (36K + 3K 2 + t(6gi2 + 4KKI2))/(AA4), (3.9) 

A -- 78K + 3K 2 + t(6K12 + 12/(23 + 8KK12 + 4KK23). 

Similar to (2.12), one can calculate the value of the dimensionless bending W at the point of its maximum 
(x = L/2): 

goL 4 - ((a2 - al)(3 + tK23) + 3h(/~l + j32)). 

Hence, using (3.9), we obtain finally 

108.102 9K 2 + tKC1 + t2C2 
= --  (3.10) 

W 71"4 78K + 3K 2 + tD1 

where 
el  = 18K23 + 12/(12 -b 3KK23; C2 = 6KI2K23 -k 4KKI2K23; 

D1 = 12K23 + 6K12 + 8KK23 + 4KK12. 

4. Comparison with Known Solutions. Let us consider as an example the solution of the problem 
on bending of a three-layer beam composed of carbon-plastic unidirectional reinforced monolayers with the 
parameters [8] Ell = 1.724- 105 mPa, E22 = 6895 mPa, GI2 : 3448 mPa, G23 = 1379 mPa, u12 =0.25. The 
geometry and the load on the beam are as follows: H/L = 1/4 z I/I0, go = 0.6895 mPa. 

For the given values of elastic constants we get 

K = E2/E1 ~ 4.10 -2, KI2 = E2/G12 ~ 2, K23 = E2/G23 ~ 5. (4.1) 

It should be noted that in the axial direction the elastic properties of the monolayers composing the beam 
differ substantially. It follows from (4.1) that to 10 -2 one can take 1 ~ 1 + K. Then we calculate the values 
of the parameter t = A2h 2 = (~rH/6L)2: with H / L  = 1/4, t = 1.71347 �9 10 -2, while with H / L  = 1/10, 
t = 0.27416 - 10 -2. As for the parameter K, with the same order of accuracy we can take 1 ~ 1 + t. As a 
result, formula (2.12) is simplified and reduced to the form 

108.102 45K 2 + t K C ~  + t2C~ 
W -  

~4 390K + tD* ' (4.2) 

C~ = 90K23 + 78K12, C~ = 9K~2 + 36KI2K23, D* = 15K23 + 16K12. 

In a similar way we find from (3.10) for the case of the broken line hypothesis 

W - 108.10____~ 2 45K 2 + t K C ;  + t2C~ (4.3) 

~r4 390K + tD~* ' 

C~ = 90K23 + 60K12, C~ = 30K12K23, D~* = 60K23 + 30K12. 

Table 1 presents the values of W and ~ obtained on the basis of different theories: solution using 
the theory of elasticity [9], analytical solutions [8] using the theory of layered beams under the hypothesis 
of straight normals (classical theory), solutions based on the Timoshenko hypothesis and on the broken line 
hypothesis [formula (4.3)], and solutions using the finite elements method [8, 10] for different types of elements. 
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TABLE 1 

L 
H 

10 

Deflection W 

E r r o r  

r % 

W 

W 

Elasticity 
theory 

[9] 

2.8872 

0.9316 

Classical 
theory 

[8] 

0.5096 

82.35 

0.5096 

42.29 

i Timoshenko 
i theory 

[81 

2.0943 

27.46 

0.7631 

18.09 

Finite elements 
method 

[8] [101 

3.5000 2.9102 

-21.22 -0.80 

Formula 

( 4 . 2 ) ] ( 4 . 3 )  

2.9182 2.8020 

-1.07 I 8.52 

0.9135 

I 1.95 

11/i 
o ,b 8o~= 

! ! 

0 2 4 ~xy 

Fig. 2. Distribution of normal ~, (L /2 ,y )  and tangential stresses 
~,y(0, y) along the beam height with L / H  = 10 

The error e is calculated as follows: 

W T - W ,  
= �9 100% 

WT 

(W T is the exact value of the dimensionless bending obtained using the theory of elasticity, W, is the 
approximate solution). 

Analysis of the results presented in the table show that both for beams of average length (L /H  = 10) 
and for short ones ( L / H  = 4) the bending calculated from formula (4.2) is in good agreement with the exact 
solution. 

For very thin beams, i.e., when t --+ 0, we have from (4.2) for the dimensionless bending W 

972.102 
W --+ W0 = - - K  ~ 0.51172. 

78. ~-4 

The quantity W0 almost coincides with that obtained with the classical theory, 
The distributions of normal e~ and tangential e~y stresses calculated from formulas (2.13) and (2.14) 

also agree well with the solutions obtained with the theory of elasticity. By way of example, let us consider 
sections of the beam with x = L/2 and 0. In the first case, the axial stresses ax achieve maximum values; in 
the second case, the tangential ones ~xy. It follows from (2.13) and (2.14) that 

6"~(L/2,y) = A2(h/31 + 3(oq + h~l)Pl(~))/2h 2, 

6"~(L/2, y) = A2(h(~2 - ~1) q" 3(a2 - ~1 ~- h(~2 q- ~l))Pl(~))/2h2, 
~3(L/2, y) = ~2(-h~1 + 3(al + h~l)Pl(~))/2h 2, 
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0 a I 
o lb e o  o 0.8 ~arg 

Fig. 3. Distribution of normal 3~:(L/2,y)  and tangential stresses 
#xy(0, y) along the beam height with L / H  = 4 

orly(O,y)  "= O ~ l ) ~ 3 ( p 0 ( ~ )  - P2(~)) /2h - fll~3(p1(~) + P2(~))/2, 

~x2y(0, y) = (c~2 - al) .~3po(~)/2h - (c~2 - o~1 "~- h(fl2 + f11)))~3P2(~)/2h, 

~3y(0, y) = ~IA3(p0(~) - P2(~)) /2h + ~1)~3(P1(~) - P2(~))/2, 

where the coefficients oq, c~2, ill, and ~2 are found from (2.11). 
The appropriate curves of stress distribution for different length-to-thickness ratios, which are shown 

in Figs. 2 and 3, almost coincide with those obtained with the elasticity theory [9]. 
This work was supported by the International Science Foundation (Grant KI/I0000) and the Russian 

Foundation for Fundamental Research (Grant 94-02-04022). 
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